本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正
商品名称:强化学习/人工智能科学与技术丛书
作者:邹伟//鬲玲//刘昱杓|责编:刘星
定价:99
出版社:清华大学
ISBN号:9787302538295
出版时间:2020-06-01
印刷时间:2020-06-01
版次:1
印次:1
开本:16开
包装:平装
页数:404
字数:577千字
\\\"为了让读者快速理解和应用强化学习技术,《强化学习》深入分析了相关算法的具体实现,由浅入深,循序渐进,内容丰富,易学实用。 《强化学习》作者具有丰富的行业实践经验,使得内容兼具理论性与实用性,不仅给出了算法的运行流程,还给出了该类算法的应用案例。书中列举了近20个强化学习算法案例,可以帮助读者快速提升自己的能力。 \\\"
\\\"《强化学习》一书内容系统全面,覆盖面广,既有理论阐述、公式推导,又有丰富的典型案例,理论联系实际。书中全面系统地描述了强化学习的起源、背景和分类,各类强化学习算法的原理、实现方式以及各算法间的关系,为读者构建了一个完整的强化学习知识体系;同时包含丰富的经典案例,如各类迷宫寻宝、飞翔小鸟、扑克牌、小车爬山、倒立摆、钟摆、多臂赌博机、五子棋、AlphaGo、AlphaGo Zero、AlphaZero等,通过给出它们对应的详细案例说明和代码描述,让读者深度理解各类强化学习算法的精髓。《强化学习》案例生动形象,描述深入浅出,代码简洁易懂,注释详细。
《强化学习》可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对强化学习感兴趣的研究人员和工程技术人员阅读参考。\\\"
\\\"邹伟 博士,睿客邦创始人,研究方向为机器学习、数据挖掘、计算几何,致力于机器学习和深度学习在实际中的应用;主持研发50多个人工智能领域工业级项目,并受邀在中国移动、花旗银行、中信集团、中航信、烽火科技、京东方、 世界等公司进行了上百场讲座和内部培训。创立的睿客邦与 十多所高校建立了AI联合实验室或实训基地;兼任天津大学创业导师、山东交通学院客座教授等。曾在多个在线平台讲授“机器学习”“深度学习”等课程,广受网友好评,累计学习人数超过百万。
鬲玲 硕士,北京神舟航天软件公司知识工程团队负责人, 研发工程师。研究方向为知识工程、语义检索、强化学习、自然语言处理。作为牵头单位技术负责人参与并完成 科技支撑计划项目1项,863计划项目1项。有多年知识管理系统以及自然语言处理项目研发经验,目前正致力于垂直领域知识图谱的落地以及强化学习在自然语言处理领域的应用。
刘昱杓 现供职于央视市场研究,深度学习、强化学习研发工程师,研究方向为计算机视觉。有多年深度学习视觉方向开发经验,参与了多个图像识别、目标检测、目标追踪等领域的落地项目。目前专注于深度强化学习方向的研究。
\\\"
目录
第1章强化学习概述
1.1强化学习的背景
1.2强化学习初探
1.2.1智能体和环境
1.2.2智能体主要组成
1.2.3强化学习、监督学习、非监督学习
1.2.4强化学习分类
1.2.5研究方法
1.2.6发展历程
1.3强化学习的重点概念
1.3.1学习与规划
1.3.2探索与利用
1.3.3预测与控制
1.4小结
1.5习题
第2章马尔可夫决策过程
2.1马尔可夫基本概念
2.1.1马尔可夫性
2.1.2马尔可夫过程
2.1.3马尔可夫决策过程
2.2贝尔曼方程
2.2.1贝尔曼期望方程
2.2.2贝尔曼 优方程
2.3 优策略
2.3.1 优策略定义
2.3.2求解 优策略
2.4小结
2.5习题
第3章动态规划
3.1动态规划简介
3.2策略评估
3.3策略改进
3.4策略迭代
3.5值迭代
3.6实例讲解
3.6.1“找宝藏”环境描述
3.6.2策略迭代
3.6.3值迭代
3.6.4实例小结
3.7小结
3.8习题
第4章蒙特卡罗
4.1蒙特卡罗简介
4.2蒙特卡罗评估
4.3蒙特卡罗控制
4.4在线策略蒙特卡罗
4.5离线策略蒙特卡罗
4.5.1重要性采样离线策略蒙特卡罗
4.5.2加权重要性采样离线策略蒙特卡罗
4.6实例讲解
4.6.1“十点半”游戏
4.6.2在线策略蒙特卡罗
4.6.3离线策略蒙特卡罗
4.6.4实例小结
4.7小结
4.8习题
第5章时序差分
5.1时序差分简介
5.2三种方法的性质对比
5.3Sarsa: 在线策略TD
5.4Qlearning: 离线策略TD方法
5.5实例讲解
5.5.1迷宫寻宝
5.5.2Sarsa方法
5.5.3Qlearning方法
5.5.4实例小结
5.6小结
5.7习题
第6章资格迹
6.1资格迹简介
6.2多步TD评估
6.3前向算法
6.4后向算法
6.5前向算法与后向算法的统一
6.6Sarsa(λ)方法
6.6.1前向Sarsa(λ)方法
6.6.2后向Sarsa(λ)方法
6.7Q (λ)方法
6.7.1前向Watkinss Q(λ)方法
6.7.2后向Watkinss Q(λ)方法
*6.7.3Pengs Q(λ)方法
6.8实例讲解
6.8.1风格子世界
6.8.2后向Sarsa(λ)
6.8.3后向Q(λ)
6.8.4实例小结
6.9小结
6.10习题
第7章值函数逼近
7.1值函数逼近简介
7.2线性逼近
7.2.1增量法
7.2.2批量法
7.3非线性逼近
7.3.1DQN方法
7.3.2Double DQN方法
7.3.3Dueling DQN方法
7.4实例讲解
7.4.1游戏简介
7.4.2环境描述
7.4.3算法详情
7.4.4核心代码
7.5小结
7.6习题
第8章随机策略梯度
8.1随机策略梯度简介
8.1.1策略梯度优缺点
8.1.2策略梯度方法分类
8.2随机策略梯度定理及证明
8.2.1随机策略梯度定理
*8.2.2随机策略梯度定理证明
8.3蒙特卡罗策略梯度
8.3.1REINFORCE方法
8.3.2带基线的REINFORCE方法
8.4TRPO方法
8.5实例讲解
8.5.1游戏简介及环境描述
8.5.2算法详情
8.5.3核心代码
8.6小结
8.7习题
第9章ActorCritic及变种
9.1AC方法
9.1.1在线策略AC方法
9.1.2离线策略AC方法
9.1.3兼容性近似函数定理
9.2A2C方法
9.3A3C方法
9.3.1简介
9.3.2异步Qlearning方法
9.3.3异步Sarsa方法
9.3.4异步n步Qlearning方法
9.3.5A3C方法详述
9.4实例讲解
9.4.1AC实例
9.4.2A3C实例
9.5小结
9.6习题
0章确定性策略梯度
10.1确定性策略梯度及证明
10.1.1确定性策略梯度定理
*10.1.2确定性策略梯度定理证明
10.2DPG方法
10.2.1在线策略确定性AC方法
10.2.2离线策略确定性AC
10.2.3兼容性近似函数定理
10.3DDPG方法
10.3.1DDPG简介
10.3.2算法要点
10.3.3算法流程
10.4实例讲解
10.4.1游戏简介及环境描述
10.4.2算法详情
10.4.3核心代码
10.5小结
10.6习题
1章学习与规划
11.1有模型方法和无模型方法
11.2模型拟合
11.2.1模型数学表示
11.2.2监督式学习构建模型
11.2.3利用模型进行规划
11.3Dyna框架及相关算法
11.3.1DynaQ
11.3.2DynaQ+
11.3.3优先级扫描的DynaQ
11.4Dyna2
11.5实例讲解
11.5.1游戏简介及环境描述
11.5.2算法详情
11.5.3核心代码
11.6小结
11.7习题
2章探索与利用
12.1探索利用困境
12.2多臂赌博机问题
12.3朴素探索
12.4乐观初始值估计
12.5置信区间上界
12.6概率匹配
12.7信息价值
12.8实例讲解
12.8.1游戏简介及环境描述
12.8.2算法详情
12.8.3核心代码
12.9小结
12.10习题
3章博弈强化学习
13.1博弈及博弈树
13.2极大极小搜索
13.3AlphaBeta搜索
13.4蒙特卡罗树搜索
13.5AlphaGo
13.5.1监督学习策略网络pσ
13.5.2快速走子策略网络pπ
13.5.3强化学习策略网络pρ
13.5.4价值网络vθ
13.5.5蒙特卡罗树搜索
13.5.6总结
13.6AlphaGo Zero
13.6.1下棋原理
13.6.2网络结构
13.6.3蒙特卡罗树搜索
13.6.4总结
13.7AlphaZero
13.8实例讲解
13.8.1游戏简介及环境描述
13.8.2算法流程描述
13.8.3算法细节
13.8.4核心代码
13.9小结
13.10习题
参考文献