本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正
《携程人工智能实践》详细介绍了携程在人工智能技术落地方面的深入探索,重点分享了如何从实际应用场景入手,把业务和产品的目标转化为人工智能模型和算法问题。并综合考虑系统、环境和数据的多种约束,设计和实施具体落地方案,同时对人工智能服务化和人工智能运营的理念和技术进行了很好的分析和总结,是携程技术团队多年开发和应用人工智能实践经验的结晶。本书对互联网行业和人工智能应用研究机构的科研技术人员来说,是一本很好的案头参考书。
《携程人工智能实践》的作者来自携程多个研发部门,从具体的应用场景入手,主要包括旅行产品的个性化推荐和搜索,旅行场景的 OCR、机器翻译和知识图谱,主题图片优选、推荐理由抽取,以及安全风险控制和如何工程化提升研发效率等,较为全面地介绍了如何对具体的业务问题进行建模,将其转变为具体的机器学习模型,并将业务目标转化为机器学习的目标函数。本书在此基础上提供了一些有效的经验,使得读者能够利用机器学习的方式全面有效地帮助企业提升业务目标、提升人效比,乃至为网站的安全保驾护航。作者希望本书能够帮助产品技术同人更好地理解机器学习模型的落地,给读者带来启发和借鉴。
携程技术团队
作为携程集团的核心竞争力,携程技术团队由近7000位来自海内外的精英工程师组成,为携程集团业务的运作和开拓提供全面技术支持,并以技术创新源源不断地为产品和服务创造价值。
技术从来都不是闭门造车,携程技术团队会一直以开放和充满热情的心态,通过各种渠道和方式,和圈内小伙伴们探讨、交流、碰撞,共同收获和成长。
《携程人工智能实践》分享了人工智能技术在携程具体业务场景中的落地,选取的都是真实技术案例,相信对相关领域的同学会有所帮助。我们也相信人工智能技术会对旅行等服务领域带来巨大改变,希望更多人参与到人工智能的实际研发中来。
——携程集团执行副总裁、技术负责人 张晨
人工智能作为一门理论与实践并重的学科,要求研究人员在理解相关理论的同时,还要了解如何在实际业务中应用人工智能技术。本书结合携程的具体业务场景,展现了人工智能技术的落地方案,从旅行产品的个性化推荐和搜索,到旅行场景的OCR、机器翻译和知识图谱,再到产品层面的主题图片优选、推荐理由抽取等,有理论、有方法,还有经验分享,适合对人工智能感兴趣的同人和从业者学习。
——北京大学计算机系副主任、长江学者特聘教授 崔斌
智能时代已经来临,携程结合自身具体业务场景,倾情奉献了人工智能实践精选。本书不仅包括个性化推荐、搜索、旅游知识图谱、QA 问答、机器翻译和证件 OCR 的AI 服务, 而且包括AI 赋能运营、智能信息安全与风控,以及挖掘平台和运营平台等AI 中台化内容。本书将理论与实践相结合,在涵盖人工智能原理与算法的基础上,提供了大量应用落地案例和相关思考。在人们越来越重视生活质量和旅游体验的背景下,本书带领读者全面了解在线旅游行业的AI 场景及解决方案,是一本不可多得的好书。
——同济大学百人计划特聘研究员,OpenKG 创始人之一 王昊奋
对于深度学习而言,最重要的是与应用场景结合,从而产生商业价值。本书从数学基础、模型构建、场景实践及工程化等方面对深度学习进行了全面的介绍,并围绕OTA 行业运营的应用实践和案例,详细讲解了神经网络模型在推荐和搜索、运营提效、风控安全等业务领域的具体实施,同时详细介绍了平台化、服务化在深度学习应用中的重要意义和具体实践。本书案例翔实、深入浅出,是携程技术团队多年实践经验的结晶,非常适合行业实践者阅读参考。
——滴滴出行杰出数据科学家 谢梁
AI 是互联网未来技术的下一站,今天我们欣喜地看见,携程AI 中台化的努力与成果,把技术人对未来的梦想在OTA 行业变成了落地的现实,真实地服务于数亿公众的出行,为AI 的产业化树立了新标杆。
——蚂蚁金服算法总监 于磊
本书的突出特点是理论与实际业务紧密结合,介绍了人工智能的核心概念、技术原理,结合携程具体业务展现了技术的落地实践。本书内容全面,案例充分,实用性强,人工智能从业者和对人工智能应用感兴趣的同人都能从中获益。
——微众银行首席人工智能官,香港科技大学讲座教授 杨强
本书详细介绍了携程在人工智能技术落地方面的深入探索,重点分享了如何从实际应用场景入手,把业务和产品的目标转化为人工智能模型和算法问题。并综合考虑系统、环境和数据的多种约束,设计和实施具体落地方案,同时对人工智能服务化和人工智能运营的理念和技术进行了很好的分析和总结,是携程技术团队多年开发和应用人工智能实践经验的结晶。本书对互联网行业和人工智能应用研究机构的科研技术人员来说,是一本很好的案头参考书。
——美国微软人工智能与研究院高级研究总监,《深度学习模型及应用详解》作者 张若非