本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正
本书中文版分为基础篇和进阶篇,深入探讨了数据挖掘的各个方面,从基础知识到复杂的数据类型及其应用,涉及数据挖掘的各种问题领域。全书既有基本方法,也有进阶内容,彼此融为一体,这使得本书既可以作为数据挖掘领域的工具书,也可以作为数据科学、人工智能、计算机等相关专业本科及研究生教材。
1、大数据和人工智能时代的数据挖掘教材,将数据挖掘归纳成四个基本问题:聚类、分类、关联模式挖掘和异常分析,不仅详解数据挖掘的基础知识,而且还介绍高级数据类型,结合复杂多样的实际数据环境,探讨数据挖掘的应用场景和使用方法。
2、作译者均为数据挖掘领域资深学者。作者是IBM T. J. Watson研究中心杰出研究员阿加沃尔博士,他擅长将计算机科学问题提炼成数学问题,而且又能用计算机科学方法解决实际问题,本书是他的代表作之一。翻译工作由国内四位数据挖掘领域的翘楚,复旦大学王晓阳教授、清华大学王建勇教授、加拿大约克大学禹晓辉教授、中科院计算所陈世敏研究员历时5年时间完成,字斟句酌,精益求精。
3、全书注重原理和方法,既有基本方法,也有进阶内容,帮助读者在数据挖掘及人工智能应用方面打下良好基础。
本书中文版分为基础篇和进阶篇,深入探讨了数据挖掘的各个方面,从基础知识到复杂的数据类型及其应用,涉及数据挖掘的各种问题领域。它超越了传统上对数据挖掘问题的关注,引入了高级数据类型,例如文本、时间序列、离散序列、空间数据、图数据和社交网络数据。到目前为止,还没有一本书以如此全面和综合的方式探讨所有这些主题。
基础篇(包括原书的第1-13章)详细介绍了针对数据挖掘的四个主要问题(聚类、分类、关联模式挖掘和异常分析)的各种解决方法、用于文本数据领域的特定挖掘方法,以及对于数据流的挖掘应用。
进阶篇(包括原书的第14-20章)主要讨论了用于不同数据领域(例如时序数据、序列数据、空间数据、图数据)的特定挖掘方法,以及重要的数据挖掘应用(例如Web数据挖掘、排名、推荐、社交网络分析和隐私保护)。
本书在直观解释和数学细节上取得了很好的平衡,既包含研究人员需要的数学公式,又以简单直观的方式呈现出来,方便学生和从业人员(包括数学背景有限的人)阅读。本书包括大量插图、示例和练习,并把重点放在语义可解释的示例上,特别适合作为高级数据挖掘课程的教材。
作者简介:
查鲁·C. 阿加沃尔(Charu C. Aggarwal)是IBM T. J. Watson研究中心的杰出研究人员,于1996年获麻省理工学院博士学位。他对数据挖掘领域有着广泛的研究,在国际会议和期刊上发表了250多篇论文,拥有80多项专利。他曾三次被评为IBM的“杰出发明人”,并曾获得IBM公司奖、IBM杰出创新奖和两项IBM杰出技术成就奖。他因为提出基于冷凝的数据挖掘中的隐私保护技术而获得EDBT2014的时间检验奖。他还获得了IEEE ICDM研究贡献奖(2015),这是数据挖掘领域对具有突出贡献的研究的两个*高奖项之一。
他曾多次担任ACM/IEEE知名国际学术会议的主席或程序委员会主席,并担任大数据相关多个知名期刊的主编或编委。由于在知识发现和数据挖掘算法上的贡献,他入选SIAM、ACM和IEEE的会士。
译者简介:
王晓阳 复旦大学特聘教授、博士生导师,中国计算机学会会士,ACM会员,IEEE高级会员。主要研究兴趣为大数据分析、数据安全等。于复旦大学获得计算机科学学士、硕士学位,于美国南加州大学获得计算机科学博士学位。曾在美国乔治梅森大学、美国佛蒙特大学、美国国家科学基金会任职。2011年至今在复旦大学任职。主持多项美国国家科学基金项目、中国国家重点研发计划项目、自然科学基金重点项目、上海市重大科研项目等,并发表过百余篇高质量学术论文,现任Springer DSE期刊主编,IEEE ICDE会议系列、IEEE BigComp会议系列指导委员会委员,曾任CCF上海分部主席,IEEE ICDE 2012及ACM CIKM 2014总主席,WAIM会议系列指导委员会主席。曾获得美国国家科学基金CAREER Award。
王建勇 清华大学计算机系教授,国际电器与电子工程师协会会士(IEEE Fellow),中国人工智能学会会士(CAAI Fellow),江苏省大数据安全与智能处理重点实验室首届学术委员会副主任。主要研究领域为数据挖掘及知识发现。迄今发表论文100余篇(其中单篇*高引用2000余次)。曾担任IEEE ICDM’19、WISE’15、BioMedCom’14、WAIM’13、ADMA’11、NDBC’10等会议的程序委员会联合主席以及IEEE TKDE、ACM TKDD和《软件学报》等期刊的编委。入选2007年度教育部“新世纪优秀人才”支持计划和2009年度日本大川研究基金资助计划。获得WWW’08的Best Posters Award、2009年度和2010年度HP实验室创新研究奖以及教育部2013年度自然科学奖二等奖。
禹晓辉 南京大学学士、香港中文大学硕士、加拿大多伦多大学博士,加拿大约克大学副教授,山东大学兼职教授、博士生导师,中国计算机学会大数据专委会委员、数据库专委会委员。研究工作主要集中在大数据管理和分析领域,研究方向涵盖时空大数据处理与挖掘、面向人工智能的数据管理、社交媒体挖掘等。主持加拿大自然科学与工程理事会基金、中国国家自然科学基金等多项国家和工业界资助的科研项目。在IEEE Trans. on Knowl. & Data Eng.及SIGMOD、VLDB、ICDE等国内外期刊和会议上发表高质量论文近100篇,是3项美国专利的发明人。曾任WAIM2015、CloudDM2015等知名国际会议的程序委员会主席,是国际期刊Information Systems(Elsevier)的编委、加拿大自然科学与工程理事会NSERC特邀评审专家。
陈世敏 中科院计算所研究员,中国科学院大学岗位教师,分别于1997年和1999年获得清华大学计算机系学士和硕士学位,于2005年在美国卡内基梅隆大学获得计算机科学博士学位。主要研究方向为数据库系统和大数据系统。曾在SIGMOD、ISCA、VLDB、ASPLOS、ICDE、CIDR等顶级国际会议和ACM TODS、IEEE TKDE等顶级国际期刊发表过论文,并获得ICDE’04 Best Paper、SIGMOD’01 Runner-up Best Paper和2008年体系结构国际会议年度顶级论文奖(Top Picks’08)。曾担任PVLDB 2017、ICDE 2018、ICDCS 2016、CIKM 2014等会议的PC Area Chair,长期担任大数据新硬件技术的主要Workshop HardBD的Co-Chair。