本站支持尊重有效期内的版权/著作权,所有的资源均来自于互联网网友分享或网盘资源,一旦发现资源涉及侵权,将立即删除。希望所有用户一同监督并反馈问题,如有侵权请联系站长或发送邮件到ebook666@outlook.com,本站将立马改正
TensorFlow是流行的、使用广泛的机器学习框架,它使得每个人都能轻松开发机器学习解决方案。使用TensorFlow 2.0,你将研究一个改进后的框架结构,它提供了大量的新特性,以提升开发者的工作效率和便于开发者使用。
本书通过聚焦于开发基于神经网络的解决方案来介绍机器学习。书中从构建深度学习解决方案所需的概念和技术开始介绍,之后将介绍如何创建分类器、构建目标检测和语义分割神经网络、训练生成式模型,以及使用TensorFlow 2.0的工具(如TensorFlow Datasets和TensorFlow Hub)加速开发过程。
学完本书之后,你将能够使用TensorFlow 2.0开发任何机器学习问题的解决方案,并能将它们部署到生产环境之中。
通过阅读本书,你将:
掌握机器学习和神经网络技术,解决有挑战性的任务。
学会使用TensorFlow 2.0的新特性加速开发。
学会使用TensorFlow Datasets (tfds)和tf.data API建立高效的数据输入流水线。
学会使用 TensorFlow Hub进行迁移学习和微调。
能够定义和训练神经网络,解决目标检测和语义分割问题。
能够训练生成式对抗网络(GAN)生成图像和数据分布。
学会使用SavedModel文件格式将模型或者通用的计算图部署到生产环境中。
本书通过聚焦于开发基于神经网络的解决方案来介绍机器学习,首先将从熟悉构建深度学习解决方案所需的概念和技术开始,然后介绍如何创建分类器、构建目标检测和语义分割神经网络、训练生成式模型,以及使用TF 2.0的工具,如TensorFlow Datasets和TensorFlow Hub,加速开发过程。学完本书之后,读者将能够使用TF 2.0开发任何机器学习问题的解决方案,并能将它们部署到生产环境之中。
保罗·加莱奥内(Paolo Galeone)是一位具有丰富实践经验的计算机工程师。获得硕士学位后,他加入了意大利博洛尼亚大学的计算机视觉实验室并担任研究员,在那里他丰富了自己在计算机视觉和机器学习领域的知识。目前,他领导着意大利ZURU科技公司的计算机视觉和机器学习实验室。
2019年,谷歌授予他机器学习领域的谷歌开发技术专家(Google Developer Expert,GDE)称号,以此认可他的专业技能。作为一名GDE,他通过写博客、在会议上演讲、参与开源项目以及回答Stack Overflow上面的问题,分享了他对机器学习和TensorFlow框架的热爱。
译者简介:
闫龙川 硕士,国家电网有限公司信息通信分公司高级工程师,信息通信技术专家,主要从事电力信息通信系统运行技术研究工作,研究兴趣包括深度学习、强化学习、自然语言处理、云计算及数据中心管理等。
白东霞 博士,国家电网有限公司信息通信分公司高级工程师,主要从事电力信息系统运行测试技术研究工作,研究兴趣包括人工智能、密码理论等。
郭永和 博士,国家电网有限公司信息通信分公司高级工程师,主要从事电力信息系统网络安全技术研究工作,研究兴趣包括机器学习、大数据分析、计算机体系结构、密码技术等。
李 妍 博士,国家电网有限公司信息通信分公司工程师,主要从事电力信息通信系统故障诊断技术研究工作,研究兴趣包括机器学习、人工智能等。